DIRTY DATA? CLEAN IT USING SAS AN INTRODUCTION TO DATA CLEANING PRINCIPLES

CYP-C Research Champion Webinar August 11, 2017 Giancarlo Di Giuseppe, MPH Pediatric Oncology Group of Ontario

Outline

- SAS overview and procedures revisited
- Fundamental principles to build a clean dataset
- Inclusion / exclusion criteria
- Visualizing data distributions
- Outliers
- Invalid or inconsistent character variables
- Dealing with missing data
- Creating data checkpoints

SAS Overview - Revisited

- For our purposes only two major things you can do in SAS
 - DATA step Manipulate the data in some way
 - Reading in Data
 - Creating and Redefining Variables
 - Sub-Setting Data
 - Working with Dates
 - Working with Formats
 - PROCedure step
 - Analyze the data
 - Produce frequency tables
 - Estimate a regression model

SAS Procedures – Revisited

- SAS Procedures
 - PROC FREQ
 - PROC PRINT
 - PROC MEANS
 - PROC UNIVARIATE
 - PROC SORT
 - PROC CONTENTS

PRINCIPLES FOR CLEANLINESS

Healthcare innovation | Survivor care | Family assistance Population data | Policy development | Education | Research

Understanding Your Dirty Data Source

- No database is initially ever "clean"
- Databases are not constructed with our own specific research questions in mind
- Researchers must be familiar with the purpose, how variables are captured and defined, and the structure of the database

http://3rdsectorlabs.com/wp-content/uploads/2014/06/TSL-data-shower.png

Having an Analysis Plan

- Having clean data requires a sound analysis plan
 - Envision what the analysis dataset will look like with all variables and formats before performing data cleaning
- Determine what your study population denominator is **before** you begin cleaning
 - Is it patient population? Is it number of total diagnoses (therefore, multiple dx's per patient is possible)? Or is it person-time? Etc.
 - Based on the research question!

Data Manipulation and Data Cleaning: A Simultaneous Process

- Data manipulation and data cleaning are not mutually exclusive, rather they go hand-in-hand!
- Both can (and should) be performed within a single DATA step

http://i.telegraph.co.uk/multimedia/archive/03219/handshake1_3219777k.jpg

• Ensures efficient and easy to follow SAS programming

SUB-SETTING YOUR DATA

Healthcare innovation | Survivor care | Family assistance Population data | Policy development | Education | Research

Receiving Your Data Cut

• Typically data is requested with slightly more information than needed

- Allows for wiggle room if hypothesis change slightly

- No data cut is ever perfect
 Data still needs to be cleaned
- Initial data cuts are never ready to be analyzed, they must first be cleaned

Cleaning Using Inclusion & Exclusion Criteria

Population data | Policy development | Education | Research

DATA DISTRIBUTION

Healthcare innovation | Survivor care | Family assistance Population data | Policy development | Education | Research

Recall From Last Session

- PROC FREQ produces frequency outputs
 - Can be used for numeric or character variables
 - Useful for counts and proportions
- PROC MEANS and UNIVARIATE produce outputs describing the data distribution for **numeric** variables

- Checkpoint for data distributions and normality

• PROC FREQ and PROC MEANS/UNIVARIATE are used in the first step of data cleaning to <u>understand</u> <u>the data</u>

Duplicate Entries

PROC FREQ DATA=T8 ORDER=FREQ; TABLE CYPCID /MISSING; RUN;

The FREQ Procedure

CYPCID	Frequency	Percent	Cumulative Frequency	Cumulative Percent
10015	1	0.04	1	0.04
10020	1	0.04	2	0.08
10022	1	0.04	3	0.12
10027	1	0.04	4	0.16
10044	1	0.04	5	0.20
10050	1	0.04	6	0.24
10052	1	0.04	7	0.28

Distribution of Continuous Data

The UNIVARIATE Procedure Variable: wbc count

Moments

Ν	2008	Sum Weights	2008
Mean	1427.86822	Sum Observations	2867159.39
Std Deviation	24523.1909	Variance	601386894
Skewness	23.0529387	Kurtosis	582.218619
Uncorrected SS	1.21108E12	Corrected SS	1.20698E12
Coeff Variation	1717.46878	Std Error Mean	547.261788

Basic Statistical Measures

Loca	ation	Variability	,
Mean	1427.868	Std Deviation	24523
Median	11.700	Variance	601386894
Mode	2.500	Range	720000
		Interguartile Range	44.01500

Distribution of Continuous Data II

Tests for Normality

Test	Statistic		sticp Value	
Kolmogorov-Smirnov Cramer von Mises	D W Sa	0.498938	Pr > D Pr > W Sa	<0.0100
Anderson-Darling	A-Sq	758.7259	Pr > A-Sq	<0.0050

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	720000.000
99%	940.000
95%	323.800
90%	173.500
75% Q3	48.515
50% Median	11.700
25% Q1	4.500
10%	2.400
5%	1.650
1%	0.700
0% Min	0.000

Distribution of Continuous Data III

The UNIVARIATE Procedure Variable: wbc_count

Extreme Observations

	Lowest			Highest	
Value	CYPCID	Obs	Valu	e CYPCID	0bs
0.0	13486	375	19000	0 12667	279
0.0	12973	319	20200	0 13664	391
0.0	12941	315	47000	0 10881	103
0.1	13623	384	57000	0 11423	159
0.2	A001141	1099	72000	0 12086	216

Missing Values

Normality of Continuous Data

Healthcare innovation | Survivor care | Family assistance Population data | Policy development | Education | Research

Dealing With Outliers

- If there are many outliers, these will introduce bias in your study
- Many options to handle these skewed data:
 Median + IQR instead of mean
 - Use a logical range of values and assign any outlier the upper bound of the range
 - Categorize your data based on the distribution or clinically meaningful ranges
- Whichever approach used should be justified!

Dealing With Outliers II

Dealing With Outliers III

Analysis Variable : WBC_COUNT_CLEAN

Mean	Minimum	Maximum	Lower Quartile	Median	Upper Quartile
56.7551245	0	500.0000000	4.5000000	11.7000000	48.5150000

Dealing With Outliers III

Dealing With Outliers III

The FREQ Procedure

	Fragmanay	Danaant	Cumulative	Cumulative
WBC_GROUP	Frequency	Percent	Frequency	Percent
	484	19.42	484	19.42
1	1513	60.71	1997	80.14
2	176	7.06	2173	87.20
3	147	5.90	2320	93.10
4	63	2.53	2383	95.63
5	38	1.52	2421	97.15
6	/ 71	2.85	2492	100.00

CLEANING CHARACTER VARIABLES

Healthcare innovation | Survivor care | Family assistance Population data | Policy development | Education | Research

CApITOLIzATioN Matters!

PROC FREQ DATA=T8; TABLES PROTOCOL_NAME; RUN;

ALL PROTOCOL A	47	0.61
ALL PROTOCOL AB	33	0.43
ALL PROTOCOL B	27	0.35
ALL PROTOCOL BEM-90	1	0.01
ALL PROTOCOL C	129	1.67
ALL PROTOCOL C & CCSG107	1	0.01
ALL PROTOCOL C (107)	1	0.01
ALL PROTOCOL C (CCG 107)	1	0.01
ALL PROTOCOL C - MODIFIED	1	0.01
ALL PROTOCOL C MODIFIED	1	0.01
ALL PROTOCOL C- (CCG-107)	1	0.01
ALL PROTOCOL C- MODIFIED	1	0.01
ALL PROTOCOL C-MODIFIED	2	0.03
ALL PROTOCOL C/CCG 107	2	0.03
ALL PROTOCOL C/CCG107	3	0.04
ALL PROTOCOL C/MODIFIED CCG107	1	0.01
ALL PROTOCOL CC 1891	1	0.01
ALL PROTOCOL, BERLIN	1	0.01
ALL Protocol C	2	0.03
ALL Standard Risk 1991	1	0.01
ALL Standard Dick DOC 9605	1	0.01
ALL protocol C	1	0.01
PEDIATRIC ONCOLOGY GROUP OF ONTARIO	Policy development Education	Kesearch

CAPITOLIZATION Matters! Use UPCASE

ALL PROTOCOL A	47	0.61
ALL PROTOCOL AB	33	0.43
ALL PROTOCOL B	27	0.35
ALL PROTOCOL BEM-90	1	0.01
ALL PROTOCOL C	132	1.70
ALL PROTOCOL C & CCSG107	1	0.01
ALL PROTOCOL C (107)	1	0.01
ALL PROTOCOL C (CCG 107)	1	0.01
ALL PROTOCOL C - MODIFIED	1	0.01
ALL PROTOCOL C MODIFIED	1	0.01
ALL PROTOCOL C- (CCG-107)	1	0.01
ALL PROTOCOL C- MODIFIED	1	0.01
ALL PROTOCOL C-MODIFIED	2	0.03
ALL PROTOCOL C/CCG 107	2	0.03
ALL PROTOCOL C/CCG107	3	0.04
ALL PROTOCOL C/MODIFIED CCG107	1	0.01
ALL PROTOCOL CC 1891	1	0.01
ALL PROTOCOL- BERLIN	1	0.01
ALL STANDARD RISK 1991	1	0.01
ALL STANDARD RISK POG 9605	1	0.01

FINDing, Cleaning, and Manipulating

ALL PROTOCOL A	47	0.61
ALL PROTOCOL AB	33	0.43
ALL PROTOCOL B	27	0.35
ALL PROTOCOL BFM-90	1	0.01
ALL PROTOCOL C	163	2.10
ALL PROTOCOL- BERLIN	1	0.01
ALL STANDARD RISK 1991	1	0.01
ALL STANDARD RISK POG 9605	1	0.01

 Healthcare innovation
 Survivor care
 Family assistance

 Population data
 Policy development
 Education
 Research

Use Caution When Searching Text

- When performing character search functions in SAS, be wary of the phrase being used
- Can lead to errors in data cleaning
- Searched term should be unique enough to prevent unwanted matches
- If "ALL PROTOCOL B" was searched using FIND(), then the BFM-90 protocol would have been misclassified as Protocol B

ALL PROTOCOL A	47	0.61
ALL PROTOCOL AB	33	0.43
ALL PROTOCOL B	27	0.35
ALL PROTOCOL BFM-90	1	0.01
ALE PROTOCOL C	163	Z.10
ALL PROTOCOL C ALL PROTOCOL- BERLIN	163	2.10 0.01
ALL PROTOCOL C ALL PROTOCOL- BERLIN ALL STANDARD RISK 1991	163 1 1	2.10 0.01 0.01
ALL PROTOCOL C ALL PROTOCOL- BERLIN ALL STANDARD RISK 1991 ALL STANDARD RISK POG 9605	163 1 1 1	2.10 0.01 0.01 0.01

MISSING DATA

Recall: Viewing Missing Data

PROC FREQ DATA = T8; TABLES STAGE_CODE /MISSING; RUN;

The FREQ Procedure

STAGE CODE

STAGE_CODE	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
	7494	 69.36	7494	 69.36	
1	268	2.48	7762	71.84	
1 A	2	0.02	7764	71.86	
1 в	1	0.01	7765	71.87	
1/2	2	0.02	7767	71.89	
11	1	0.01	7768	71.90	
1A	64	0.59	7832	72.49	

Understanding Your Missing Data

PROC FREQ DATA = T8; WHERE DX1_GRP = 2; TABLES STAGE_CODE /MISSING; RUN;

- Staging not done for the leukemia's which represent a high % of childhood cancers
- Staging important for lymphomas
- Know your data!

The FREQ Procedure

STAGE_CODE

			Cumulative	Cumulative Percent	
STAGE_CODE	Frequency	Percent	Frequency		
	534	32.07	534	32.07	
1	44	2.64	578	34.71	
1 A	2	0.12	580	34.83	
1 B	1	0.06	581	34.89	
11	1	0.06	582	34.95	
1a	56	3.36	638	38.32	

DATA CHECKPOINTS

Healthcare innovation | Survivor care | Family assistance Population data | Policy development | Education | Research

Date Checkpoints I

PEDIATRIC ONCOLOGY GROUP OF ONTARIO

The FREQ Procedure

DEATH_FLAG	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	10799	99.95	10799	99.95
1	5	0.05	10804	100.00
DX_FLAG	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	10804	100.00	10804	100.00
	IDS WITH CANCER NOW, FOR LIFE.		Healthcare innovation	Survivor care Family as

Population data | Policy development | Education | Research

Date Checkpoints II

;

PROC PRINT DATA=T8 NOOBS; WHERE DOD < DX_DATE1 AND DOD ^=.</pre>

VAR PATIENT ID DX DATE1 DOD;

RUN;

Treatment Checkpoints

```
DATA TX FLAGS;
   MERGE T8 (IN=MASTER) CHEMO (IN=A) SURG (IN=B)
         BMT
             (IN=C) RAD (IN=D);
   BY CYPCID;
   IF A THEN CHEMO = 1; ELSE CHEMO = 0;
      B THEN SURGERY = 1; ELSE SURGERY = 0;
                                                 Treatment flags
   IF C THEN BMT = 1; ELSE BMT = 0;
   IF D THEN RAD = 1; ELSE RAD = 0;
   NUM TX MODALITIES = SUM(CHEMO, SURGERY, BMT, RAD);
      FIRST.CYPCID;
    ΤF
      MASTER THEN OUTPUT;
RUN;
```

REMEMBER: All datasets involved in a merge must be sorted by the common identifier (ie.CYPCID)

Treatment Checkpoints II

PROC FR	EQ DATA=TX_FLAGS;						
TAB	LES DX1_GRP * (CHEMO	SURGE	RY BMT	RAD);			
TAB	LES DX1_GRP * NUM_TX_	MODAL	ITIES;				
RUN;							
Frequency Row Pct Col Pct	Table of DX1_GRP by CHEMO			by SURG	ERY		
	DX1_GRP(DIAGNOSIS OF	CHEMO		SURGERY			
	GROUPED)	0. NO	1. YES	Total	0. NO	1. YES	Total
	1. LEUK	107 3.40 3.50	3037 96.60 39.21	3144	3046 96.88 57.09	98 3.12 1.79	3144
	2. LYMPHOMA AND RETIC	327 19.64 10.69	1338 80.36 17.28	1665	844 50.69 15.82	821 49.31 15.01	1665
	3. CNS	1475 58.53 48.22	1045 41.47 13.49	2520	915 36.31 17.15	1605 63.69 29.35	2520
	4. SNS TUMORS AND RETINO	346 38.96 11.31	542 61.04 7.00	888	156 17.57 2.92	732 82.43 13.38	888
	5. KIDNEY	83 15.49 2.71	453 84.51 5.85	536	26 4.85 0.49	510 95.15 9.33	536

Treatment Checkpoints II

Topics Covered

- Key principles to build a clean dataset
- Using Inclusion / exclusion criteria
- Visualizing data distributions
- Handling data outliers
- Cleaning character variables
- Dealing with missing data
- Creating data checkpoints

THANK YOU!

Healthcare innovation | Survivor care | Family assistance Population data | Policy development | Education | Research