An Overview of Competing Risk Analysis in Time-to-Event Outcomes Using SAS

CYP-C Research Champion Webinar Series

JUNE 26, 2019

Presented by:Giancarlo Di Giuseppe, MPHResearch Associate & AnalystPediatric Oncology Group of Ontariogdigiuseppe@pogo.ca

Outline

- Refresher and overview of time-to-event analysis
- What is a competing risk? Why do we need to consider them?
- Assumptions of competing risk analysis
- Data structure
- Cumulative Incidence Function
- Sub-distributional Hazard Fine and Gray method
- Cause-specific Hazard alternative method

Time-to-event analysis refresher

- Synonymous with survival analysis
- Models the occurrence and **timing** of an outcome of interest
 - Origin of observation window (t₀) varies by research objective
- Censoring of individuals being followed describes periods of no observation
 - Left, right, and interval
- Reason for censoring may vary (critical for competing risk analysis) for individuals and depends on the research objectives
 - Examples include: lost-to-follow up, outcome of interest, end of study observation, death, etc.

What is a Competing Risk?

- Competing risks are said to be present when a patient is at risk of more than one mutually exclusive event, where the occurrence of one event will prevent any other from happening
- An individual can experience a failure event from one of several possible causes, with one failure cause precluding the others
- Examples: All-cause mortality (can be a comp risk for anything, really); treatmentrelated mortality, progressive disease, or relapse in BMT studies

When & Why?

- Traditional survival analyses tend to focus on failure-time data that have a single type of failure
- Competing risks should be considered when the occurrence of one event hinders the occurrence of other types of events from ever happening (i.e. death)
- Competing risk analysis allows us to model separate survival probabilities for events in the presence of competing events

Assumptions of Survival Analysis

- All assumptions of traditional survival analysis apply to competing risks
- Have to assume that the reason for censoring are **independent** and reasonable
 - No way of testing independence assumption
- Censoring is assumed to be: random & non-informative
- Individuals have the same future risk of the event of interest as individuals who have not been censored and have not had the event of interest

Hypothetical Competing Risk Study – an example

Mock Study to Understand Comp Risk

- Interested in studying the effect of treatment received for a primary cancer has on the development of a subsequent malignant neoplasm (SMN)
- Intensity of Treatment Rating Scale (ITR-3) is a composite measure of the treatment received for paediatric cancer protocols
- Patients are followed from their initial diagnosis date of the primary cancer (t₀) to the development of an SMN or when the study ends (December 31, 2016)
- Death must be considered a competing risk

Data Structure

Ensures no outcomes occur outside of the observation window

Calculating time between dates of interest


```
DATA T2; SET T;
    /* DEFINING MY COHORT */
    IF 1985 <= DX1_YEAR <= 2012;
    IF 0 < DX1_AGE < 15;
    IF ITR IN (1:4);</pre>
```

/* MAKING SURE MY EVENTS OF INTEREST HAPPEN WITHIN THE OBSERVATION WINDOW */
* DEATHS;
IF . < DEATH DATE <= '31DEC2016'D THEN DO; DEATH = 1; END;</pre>

```
ELSE DO; DEATH = 0; DEATH_DATE = .; END;
```

* SMN'S; IF . < DX_DATE2 <= '31DEC2016'D THEN DO; SMN = 1; END; ELSE DO; SMN = 0; DX_DATE2 = .; END;

LABEL TIME_DEATH = "NO. DAYS BETWEEN DX1 DATE AND DEATH"; IF DEATH = 1 THEN DO; TIME_DEATH = DEATH_DATE - DX_DATE1; IF TIME_DEATH < 0 THEN TIME_DEATH = 0; /*POST-MORTEM DEATHS TO DAY ZERO */ END;

LABEL TIME_SMN = "NO. DAYS BETWEEN DX1 DATE AND DX2 DATE"; TIME_SMN = DX_DATE2 - DX_DATE1;

Data Structure – contd.

Creates a censor date variable to be used to calculate FU time

Defines the competing risk and reason for censoring

```
/* CENSORED ON THE EARLIEST OF: SMN DX, DEATH, OR DEC 31 2016 */
FORMAT CENSOR_DATE DATE9.;
CENSOR_DATE = MIN(DX_DATE2, DEATH_DATE, '31DEC2016'D);
/* DEFINES MY CENSOR VARIABLE WHERE EXITS ARE DUE TO:
  1 = SMN DIAGNOSIS
  2 = DEATH (FROM ANY CAUSE)
  0 = NO OUTCOME EVENT EXPERIENCED AND CENSORED AT STUDY END */
LABEL CENS CMPRSK = "CENSOR VARIABLE STATUS FOR CMP RSK";
IF SMN = 1 AND (DX DATE2 < DEATH DATE OR DEATH DATE = .) THEN CENS CMPRSK = 1;
 ELSE IF DEATH = 1 AND SMN = 0 THEN CENS CMPRSK = 2;
ELSE CENS CMPRSK = 0;
/* FOLLOW-UP TIME VARIABLE USING THE DEFINED CENSOR DATE */
LABEL CENS TIME = "CENSOR TIME (IN DAYS)";
CENS_TIME = CENSOR_DATE - DX_DATE1;
```

/* CREATING A VARIABLE WHICH DOES NOT CAPTURE DEATH AS A REASON FOR EXIT */
IF CENS_CMPRSK = 1 THEN STATUS = 1; ELSE STATUS = 0;

Data Structure

SUBJECT_	ID DEATH	SMN	ITR	TIME_DEATH	TIME_SMN	CENS_CMPRSK	CENS_TIME	STATUS
			2. MODERATELY					
1	0. NO	0. NO	INTENSIVE			0	6815	0
			2. MODERATELY					
2	0. NO	0. NO	INTENSIVE			0	7031	0
3	1. YES	0. NO	4. MOST INTENSIVE	107		2	107	0
26	1. YES	1. YES	4. MOST INTENSIVE	2453	2094	1	2094	1
35	1. YES	0. NO	3. VERY INTENSIVE	206		2	206	0

Cumulative Incidence

Cumulative Incidence Function (CIF)

- Cumulative incidence is the probability that an event of interest occurs before a given time t
- In competing risk analysis, the CIF is the cumulative probability of failure from a specific cause over time accounting for the fact that patients can fail from other causes (the competing risk)
- Recall: Cumulative incidence is equal to 1 survival probability when only right censoring is present

Cumulative Incidence Function (CIF)

• CIF can easily be calculated in SAS 9.4

CIF in older versions of SAS

• Previous versions of SAS have a CIF macro built-in using the %CIF function

Kaplan-Meier – an overestimation in CR

- Primary assumption in Kaplan-Meier is that individuals who are censored have the same survival probability as those who continue to be followed – violated in competing risk analysis
- Biased due to the fact that the probability of event occurrence is modified (aka conditional) by an antecedent competing event
- Traditional KM curves will result in biased and overestimated results in the presence of competing risks

```
/* STANDARD KAPLAN-MEIER METHOD */
PROC LIFETEST DATA=T3 NOTABLE
    OUTSURV=KM_OUTPUT
    PLOTS=SURVIVAL(FAILURE NOCENSOR TEST);
    TIME CENS_TIME*STATUS(0);
    STRATA ITR;
```


Kaplan-Meier – an overestimation in CR

Test of Equality over Strata									
		Pr >							
Chi-Square	DF	Chi-Square							
118.1122	3	<.0001							
104.9924	3	<.0001							
114.4263	3	<.0001							
	of Equality o Chi-Square 118.1122 104.9924 114.4263	of Equality overChi-SquareDF118.11223104.99243114.42633							

KM vs. CIF

Summary of the Number of Censored and Uncensored Values									
					Percent				
Stratum	ITR	Total	Failed	Censored	Censored				
1	1. LEAST INTENSIVE	1022	9	1013	99.12				
2	2. MODERATELY INTENSIVE	3269	72	3197	97.80				
3	3. VERY INTENSIVE	2995	132	2863	95.59				
4	4. MOST INTENSIVE	2370	110	2260	95.36				
Total		9656	323	9333	96.65				

Summary of Failure Outcomes									
		Failed	Competing						
Stratum	ITR	Events	Events	Censored	Total				
1	1. LEAST INTENSIVE	9	36	977	1022				
2	2. MODERATELY INTENSIVE	72	312	2887	3271				
3	3. VERY INTENSIVE	132	585	2279	2996				
4	4. MOST INTENSIVE	110	1204	1056	2370				
Total		323	2137	7199	9659				

Hazard Function: Sub-distribution

Sub-distribution Hazards – Fine and Gray

- Fine and Gray (1999) proposed a proportional hazards model aimed at examining the effects of covariates in the context of competing risks
- Uses the <u>cumulative incidence function</u> to model **sub-distribution** hazards
- Risk set contains subjects who are currently event free, as well as those who have previously experienced a competing event
- Sub-distribution hazard subjects who are censored from the competing risk remain in the risk set and are given a weight which reduces with censoring time


```
Available in SAS 9.4
```

```
PROC PHREG DATA=T3;
CLASS ITR (REF='1. LEAST INTENSIVE')
DX_GROUP1 (REF="4. SOLID TUMOR + OTHER")
RAD (REF="0. NO")
/PARAM=REFERENCE;
```

MODEL CENS_TIME*CENS_CMPRSK(0) = ITR DX1_AGE DX_GROUP1 RAD / RL EVENTCODE=1;

RUN;

If using older version of SAS, use %PSHREG

 %PSHREG macro for older versions of SAS and will perform the Fine and Gray modelling regression

More information can be found here:

https://cemsiis.meduniwien.ac.at/kb/wf/software/statistische-software/pshreg/

Kohl M, et al. PSHREG: a SAS macro for proportional and nonproportional subdistribution hazards regression. Comput Methods Programs Biomed. 2015;118(2):218-33. doi: 10.1016/j.cmpb.2014.11.009.

The PHREG Procedure

Model Information

Data Set	WORK.T3						
Dependent Variable	CENS_TIME	CENSOR	TIME (IN	DAYS)			
Status Variable	CENS_CMPRSK	CENSOR	VARIABLE	STATUS	FOR	CMP	RSK
Event of Interest	1	CENSOR	VARIABLE	STATUS	FOR	CMP	RSK
Competing Event	2	CENSOR	VARIABLE	STATUS	FOR	CMP	RSK
Censored Value	0	CENSOR	VARIABLE	STATUS	FOR	CMP	RSK

Summary of Failure Outcomes

Effect	DF	Wald Chi-Square	Pr > ChiSq
ITR	3	35.8569	<.0001
DX1_AGE	1	0.1630	0.6864
DX_GROUP1	3	38.4740	<.0001
RAD	1	16.4573	<.0001

Analysis of Maximum Likelihood Estimates

			Parameter	Standard			Hazard	95% Hazar	d Ratio
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq	Ratio	Confidenc	e Limits
ITR	2. MODERATELY INTENSIVE	1	0.76416	0.36525	4.3772	0.0364	2.147	1.049	4.393
ITR	VERY INTENSIVE	1	1.44259	0.36168	15.9089	<.0001	4.232	2.083	8.597
ITR	MOST INTENSIVE	1	1.58799	0.36911	18.5087	<.0001	4.894	2.374	10.089
DX1_AGE		1	0.00542	0.01342	0.1630	0.6864	1.005	0.979	1.032
DX GROUP1	1. LEUKEMIA	1	-0.31836	0.14976	4.5193	0.0335	0.727	0.542	0.975
DX GROUP1	2. LYMPHOMA	1	0.74805	0.17719	17.8223	<.0001	2.113	1.493	2.990
DX_GROUP1	3. CNS	1	0.00366	0.16430	0.0005	0.9822	1.004	0.727	1.385
RAD	1. YES	1	0.49547	0.12213	16.4573	<.0001	1.641	1.292	2.085

What about the competing risk?

- Can quantify the instantaneous hazard for the competing risk in our cohort by changing the **event code** of interest
- Same interpretation as the previous output "the hazard of death in the presence of a SMN diagnosis as a competing risk"

```
PROC PHREG DATA=T3;
 CLASS ITR (REF='1. LEAST INTENSIVE')
          DX_GROUP1 (REF="4. SOLID TUMOR + OTHER")
          RAD (REF="0. NO")
          /PARAM=REFERENCE;
```

MODEL CENS_TIME*CENS_CMPRSK(0) = ITR DX1_AGE DX_GROUP1 RAD / RL EVENTCODE=2;

Type 3 Tests

Summary of Failure Outcomes

Total	Event of Interest	Competing Event	Censored
9656	2134	323	7199

Effect	DF	Wald Chi-Square	Pr ≻ ChiSq
ITR	3	1099.9723	<.0001
DX1 AGE	1	4.1000	0.0429
DX GROUP1	3	191.9531	<.0001
RAD	1	7.0828	0.0078

Analysis of Maximum Likelihood Estimates

				Parameter	Standard				Hazard	95% Hazard	Ratio
Parameter			DF	Estimate	Error	Chi-Square	Pr >	ChiSq	Ratio	Confidence	Limits
ITR	2.	MODERATELY INTENSIVE	1	1.08001	0.18202	35.2047	<	.0001	2.945	2.061	4.207
ITR	з.	VERY INTENSIVE	1	1.73951	0.17817	95.3230	<	.0001	5.695	4.016	8.074
ITR	4.	MOST INTENSIVE	1	2.89518	0.17602	270.5382	<	.0001	18.087	12.810	25.538
DX1_AGE			1	0.01035	0.00511	4.1000	0	.0429	1.010	1.000	1.021
DX_GROUP1	1.	LEUKEMIA	1	-0.40460	0.05247	59.4659		.0001	0.00/	0.602	0.740
DX_GROUP1	2.	LYMPHOMA	1	-0.33679	0.08890	14.3525	0	.0002	0.714	0.600	0.850
DX_GROUP1	з.	CNS	1	0.33409	0.05536	36.4231	<	.0001	1.397	1.253	1.557
RAD	1.	YES	1	0.12538	0.04711	7.0828	0	.0078	1.134	1.034	1.243

Not distinguishing the event type

Hazard Function: Cause-specific

- Standard Cox regression modelling strategy with competing events treated as censored observations
- Instantaneous risk from a specific event after censoring for the competing risk and conditional on survival until time t or later
- Risk set decreases with time after individuals are censored for the competing event
- Note: Cause-specific hazards do not allow us to examine the effects of covariates on the CIF → this is what led Fine and Gray to develop their regression method


```
PROC PHREG DATA=T3;
CLASS ITR (REF='1. LEAST INTENSIVE')
DX_GROUP1 (REF="4. SOLID TUMOR + OTHER")
RAD (REF="0. NO")
/PARAM=REFERENCE;
```

MODEL CENS_TIME*CENS_CMPRSK(0,2) = ITR DX1_AGE DX_GROUP1 RAD / RL;
RUN;

The PHREG Procedure

	Model Inform	mation			Summary	of	the	Number	of	Event	and	Censored	Values
Data Set Dependent Variable Censoring Variable	WORK.T3 CENS_TIME CENS_CMPRSK	CENSOR T CENSOR V	IME (VARIAE	IN I	Тс	otal		Ever	ıt	Cens	sored	Perc 1 Censo	cent ored
Censoring Value(s) Ties Handling	0 2 BRESLOW				9	9656	5	32	23		9333	3 9(6 <mark>.</mark> 65

Type 3 Tests

Effect	DF	Wald Chi-Square	Pr > ChiSq
ITR	3	87.1208	<.0001
DX1 AGE	1	0.6325	0.4265
DX_GROUP1	3	40.2795	<.0001
RAD	1	17.5673	<.0001

Analysis of Maximum Likelihood Estimates

Parameter			Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	95% Hazar	d Ratio
		DF						Confidence Limits	
ITR	2. MODERATELY INTENSIVE	1	0.86775	0.36352	5.6981	0.0170	2.382	1.168	4.856
ITR	3. VERY INTENSIVE	1	1.59356	0.35736	19.8845	<.0001	4.921	2.443	9.914
ITR	4. MOST INTENSIVE	1	2.22457	0.36217	37.7282	<.0001	9.250	4.548	18.810
DX1_AGE		1	0.01045	0.01314	0.6325	0.4265	1.011	0.985	1.037
DX_GROUP1	1. LEUKEMIA	1	-0.49215	0.15011	10.7497	0.0010	0.611	0.456	0.820
DX_GROUP1	2. LYMPHOMA	1	0.61476	0.17464	12.3912	0.0004	1.849	1.313	2.604
DX_GROUP1	3. CNS	1	0.08382	0.16157	0.2691	0.6039	1.087	0.792	1.493
RAD	1. YES	1	0.50711	0.12099	17.5673	<.0001	1.660	1.310	2.105

Do we unintentionally model competing risk?!

- Recall the dichotomized variable STATUS: where 1=SMN diagnosis & 0=censored
- Death's were captured, but contained within the composite censor value of '0'

```
* COMPOSITE EVENT CAPTURED IN THE STATUS VARIABLE;
PROC PHREG DATA=T3;
CLASS ITR (REF='1. LEAST INTENSIVE')
DX_GROUP1 (REF="4. SOLID TUMOR + OTHER")
RAD (REF="0. NO")/PARAM=REFERENCE;
MODEL CENS_TIME*STATUS(0) = ITR DX1_AGE DX_GROUP1 RAD / RL;
RUN;
```


Total	Event	Censored	Percent Censored					
9656	373	0333	96 65					
5050	525	5000	50.05					
Type 3 Tests								
		Wald						
Effect	DF	Chi-Square	Pr > ChiSq					
ITR	3	87.1208	<.0001					
DX1_AGE	1	0.6325	0.4265					
DX_GROUP1	3	40.2795	<.0001					

Summary of the Number of Event and Censored Values

Analysis of Maximum Likelihood Estimates

Parameter		DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio	95% Hazar Confidenc	d Ratio e Limits
ITR	2. MODERATELY INTENSIVE	1	0.86775	0.36352	5.6981	0.0170	2.382	1.168	4.856
ITR	VERY INTENSIVE	1	1.59356	0.35736	19.8845	<.0001	4.921	2.443	9.914
ITR	4. MOST INTENSIVE	1	2.22457	0.36217	37.7282	<.0001	9.250	4.548	18.810
DX1 AGE		1	0.01045	0.01314	0.6325	0.4265	1.011	0.985	1.037
DX GROUP1	1. LEUKEMIA	1	-0.49215	0.15011	10.7497	0.0010	0.611	0.456	0.820
DX_GROUP1	2. LYMPHOMA	1	0.61476	0.17464	12.3912	0.0004	1.849	1.313	2.604
DX_GROUP1	3. CNS	1	0.08382	0.16157	0.2691	0.6039	1.087	0.792	1.493
RAD	1. YES	1	0.50711	0.12099	17.5673	<.0001	1.660	1.310	2.105

Sub-distribution vs. Cause-specific hazard

- Differences in the hazards are due to the underlying **risk set** used
- When the competing risk is common, cause-specific hazards will overestimate the hazard
- Degree of overestimation depends on the frequency and distribution of competing events

Summary

- Competing risk analysis is considered when subject is at risk of more than one mutually exclusive outcome event
- Models separate survival probabilities for outcome of interest in the presence of competing events
- Analysis is easily performed in SAS with slight modifications to the PROC LIFETEST and PROC PHREG procedures
- There are two methods to perform competing risk analysis in SAS: subdistributional hazards or cause-specific hazards

Additional Readings

Andersen PK, et al. Competing risks in epidemiology: possibilities and pitfalls. Int J Epidemiol. 2012;41(3):861-70.

Dignam JJ, et al. The use and interpretation of competing risks regression models. Clin Cancer Res. 2012;18(8):2301-8.

Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J Am Stat Assoc. 1999; 94(446): 496-509

Pintilie M. (2006), Competing Risks: A Practical Perspective, Statistics in Practice, Chichester, UK: John Wiley & Sons

