CYP-C Data Analysis Using SAS II

CYP-C Research Champion Webinar
November 24, 2017
Jason D. Pole, PhD

PEDIATRIC ONCOLOGY GROUP OF ONTARIO

Overview

- Data Analysis
- Introduction to time-to-event analysis
- Kaplan-Meier Curves
- Cumulative Incidence Curves
- Introduction to Cox Proportional Hazards Modeling

Introduction to Time-To-Event Analysis

Time-To-Event (TTE) Analysis

- Often referred to as survival analysis
- Modelling technique allows you to examine the occurrence and timing of any event
- Time has two components
- Scale
- Years, days, hours, minutes, seconds, microseconds
- Selection of scale has little impact on analysis
- Only effects the intercept
- Origin
- Often implicit but can have large effect on estimates
- We use time of diagnosis as Time $=0$ but really we really want time of disease onset
- Time of diagnosis is affected by so many things
- Age, sex, access to care, symptoms etc.
- In RCTs it is time of randomization

Time-To-Event (TTE) Analysis II

- Interested in the frequency of events happening over a period of observation
- By counting frequency over time we can think of this as the density of events

Censoring

- Describes periods of no observation
- Many different kinds of censoring
- Left - some period before you start observing where events could occur
- Right - some period after you stopped observing where events could occur
- Interval - combines both left and right censoring

Describing TTE Distributions

- Cumulative Distribution Function
- Tells us the probability that the variable T will be less than or equal to any value of time (t) we choose $\mathrm{F}(\mathrm{t})$
- Survival Function
- Probability of surviving beyond t
$-S(t)=1-F(t)$
- $S(t)$ is a probability: bounded by 0 and 1

Describing TTE Distributions 2

- Hazard Function
- Quantifies the instantaneous risk that an event will occur at time t
- We condition this on having survived to time t
- Describes the number of events per interval of time
- The survival function and hazard function are all equivalent ways describing a continuous probability function

Data Structure in TTE

- For basic TTE analysis (no left censoring)
- For each unit of analysis
- time from start of observation (origin) to event or censoring (measure in any scale you choose)
- Status at end of time (often called censor)
- Status = 0 = person had event (observed event)
- Status = 1 = person was censored (observation ended)

Subject	Time	Censor	Tx_Arm	Age
A	2.00	0	2	1
B	3.00	1	2	2
C	0.50	0	1	2
D	2.75	0	1	3
E	2.25	1	2	1

Kaplan-Meier Estimator

Kaplan-Meier Estimator

- Most widely used method to estimate the survival function
- Also known as the product-limit estimator
- In 1958, Kaplan and Meier demonstrated that this method was the nonparametric maximum likelihood estimator (although the method had been used for years earlier)

Overall Survival

DATA T7; SET T6;
IF DUMALL = 1;
TimeLastFU = LAST_CONTACT_DATE - DX_DATE;
LABEL TIMELASTFU = 'NO. OF DAYS BETWEEN DIAGNOSIS AND LAST FU';
TimeDeath = DateDeath - DX_DATE;
LABEL TIMEDEATH = 'NO. OF DAYS BETWEEN DIAGNOSIS AND DEATH';

```
/* SETS ALL POST-MORTEM DEATHS TO DAY ZERO */
```

/* CensOS = 1 = PATIENT IS ALIVE */

If TimeDeath < 0 then TimeDeath $=0$;
If DateDeath $=$. then TimeDeath $=$.;
If TimeDeath $=$. then CensOS = 1; else CensOS = 0;
TimeSurvival = Min (TimeLastFU, TimeDeath);
RUN;
PROC LIFETEST DATA = T7;
TIME TIMESURVIVAL*CENSOS(1);
RUN;

The LIFETEST Procedure

Product-Limit Survival Estimates

| Time | | | Survival | | |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| Standard | Number | Number | | | |
| Survival | Survival | Failure | Error | Failed | Left |
| 1825.00 | 0.9127 | 0.0873 | 0.00600 | 209 | 927 |

PROC LIFETEST DATA = T7 PLOT = (S); TIME TIMESURVIVAL*CENSOS(1);

RUN;

Product-Limit Survival Estimate

DATA T7; SET T7;
IF 0 <= DX_AGE <= 0 THEN EARLY_AGE = 'INFANT';
IF $1<=$ nX $\triangle G F<=5$ THFN FARIY $\Delta G F=$ 'YOIING'.
IF 6 <
RUN:
The LIFETEST Procedure

Summary of the Number of Censored and Uncensored Values

Stratum	EARLY AGE	Total	Failed	Censored	Percent Censored
1	INFANT	77	35	42	54.55
2	OLD	939	96	843	89.78
3	YOUNG	1707	85	1622	95.02
Total		2723	216	2507	92.07

NOTE: 9 observations with invalid time, censoring, or strata values were deleted.

3.00	$0.99 / 1$	0.00234	$0.0011 /$	4	$1 / 03$
5.00	0.9971	0.00293	0.00131	5	1702

Product-Limit Survival Estimates

EARLY_AGE —— INFANT --- OLD -- - YOUNG

Test of Equality over Strata			
Test	Chi-Square	DF	Pr $>$ Chi-Square
Log-Rank	242.9273	2	$<.0001$
Wilcoxon	263.9643	2	$<.0001$
-2Log(LR)	124.7142	2	$<.0001$

- Each test has different properties
- Wilcoxon is more sensitive to early times (is a weighted sum of deviations and by definition there are more observations in the early period)

Event-Free Survival

```
DATA T7; SET T6;
IF DUMALL = 1;
TimeRelapse = RX_DATE1 - DX_DATE;
LABEL TIMERELAPSE = 'NO. OF DAYS BETWEEN DIAGNOSIS AND FIRST RELAPSE';
TimeLastFU = LAST_CONTACT_DATE - DX_DATE;
LABEL TIMELASTFU = 'NO. OF DAYS BETWEEN DIAGNOSIS AND LAST FU';
TimeDeath = DateDeath - DX_DATE;
LABEL TIMEDEATH = 'NO. OF DAYS BETWEEN DIAGNOSIS AND DEATH';
/* SETS ALL POST-MORTEM DEATHS TO DAY ZERO */
IF TimeDeath < 0 then TimeDeath = 0; if DateDeath = . then TimeDeath = .;
/* DEFINES EFS USING RELASPE, DEATH AND LAST FOLLOW-UP */
TimeEvent = Min(TimeRelapse, TimeLastFU, TimeDeath);
LABEL TIMEEVENT = 'NO. OF DAYS BETWEEN DIAGNOSIS AND EFS EVENT';
/* IF PATIENT DID NOT RELASPE AND DID NOT DIE THEN CENSORED */
IF (TIMERELAPSE = . AND TIMEDEATH = .) THEN CensEFS = 1; else CensEFS = 0;
IF 0 <= DX_AGE <= 0 THEN EARLY_AGE = 'INFANT';
IF 1 <= DX_AGE <=5 THEN EARLY_AGE = 'YOUNG';
IF 6 <= DX_AGE THEN EARLY_AGE = 'OLD';
RUN;
```


PROC LIFETEST DATA = T7 PLOT = (S);
 TIME TIMEEVENT*CENSEFS(1);
 STRATA EARLY_AGE;

RUN;

Product-Limit Survival Estimates

EARLY_AGE - INFANT - - OLD $-\cdots-$ YOUNG

Cumulative Incidence

Cumulative Incidence

- probability that a particular event, such as occurrence of a particular disease, has occurred before a given time
- In situation with only right censoring equivalent to 1-survival
- In SAS 9.4 can be estimated using PHREG procedure, prior need to use macro

DATA T8; SET T7;

IF TIMESURVIVAL = 0 THEN TIMESURVIVAL = 0.005; RUN;

```
%CumIncid(data=t8,
        out=CumInc,
        time=timesurvival,
        status=censos,
        event=0,
        compete=2,
        censored=1,
        strata=,
        alpha=.05,
        options=noprint plotcI);
```

RUN;

Cumulative Incidence Function with 95% Confidence Limits

FILENAME: CYPC TRIAL V7.SAS - DATE: 23NOV17

Cox Proportional Hazards Regression

Cox Proportional Hazards

- K-M Curves are limited by not being able to control or adjust survival for other co-variates (only stratified analysis)
- Cox Regression is semi-parametric (you do not need to specify a probability distribution for survival times)
- Can easily incorporate time-dependent covariates
- Can use discrete and continuous time measures (you may only measure an outcome every year)

Cox Proportional Hazards II

- Reminder
- Hazard Function quantifies the instantaneous risk that an event will occur at time t
- Key Assumption is proportional hazards
- survival curves for two strata (defined by any covariate you put in the model) must have hazard functions that are proportional over time (i.e. constant relative hazard)
- Test this by introducing an interaction with time for each covariate and testing if the interaction term is statistically significant

PROC PHREG DATA = T7;
 CLASS EARLY_AGE (REF="YOUNG");
 MODEL TIMESURVIVAL*CENSOS(1) = EARLY_AGE / RL; RUN;

/* note I have recoded early_age to be numeric */

The PHREG Procedure

$$
\text { Type } 3 \text { Tests }
$$

Effect	DF	Wald Chi-Square	$\mathrm{Pr}>\mathrm{ChiSq}$
EARLY_AGE	2	163.2025	$<.0001$

Analysis of Maximum Likelihood Estimates

Parameter	DF	Parameter Estimate	Standard Error		$\mathrm{Pr}>$ Chisq	Hazard Ratio	95\% Hazard Confidence	Ratio Limits	Label
				Chisquare					
EARLY_AGE INFANT	1	2.57624	0.20166	163.2015	<. 0001	13.148	8.855	19.521	EARLY_AGE INFANT
EARLY_AGE OLD	1	0.74155	0.14893	24.7912	<.0001	2.099	1.568	2.811	EARLY_AGE OLD

PROC PHREG DATA = T7;
 CLASS EARLY_AGE (REF="YOUNG") MALE (REF="0");
 MODEL TIMESURVIVAL*CENSOS(1) = EARLY_AGE MALE / RL; RUN;

Type 3 Tests
Wald
Effect DF Chi-Square $\mathrm{Pr}>$ Chisq

EARLY_AGE	2	166.9010	$<.0001$
MALE	1	6.9780	0.0083

Analysis of Maximum Likelihood Estimates

Parameter	Parameter		Standard			Hazard Ratio	95\% Hazard Ratio		
	OF			Chi-square	Pr $>$ Chisq				Label
EARLY_AGE INFANT	1	2.61208	0.20220	166.8854	<. 0001	13.627	9.169	20.255	EARLY_AGE INFANT
EARLY_AGE OLD	1	0.73262	0.14897	24.1858	<. 0001	2.081	1.554	2.786	EARLY_AGE OLD
MALE 1	1	0.37553	0.14216	6.9780	0.0083	1.456	1.102	1.924	MALE 1

Testing Proportionality Assumption

```
PROC PHREG DATA = T7;
CLASS EARLY_AGE (REF="YOUNG") MALE (REF="0");
MODEL TIMESURVIVAL*CENSOS(1) = EARLY_AGE MALE AGE_T MALE_T/RL;
AGE_T = EARLY_AGE*LOG(TIMESURVIVAL);
MALE_T = MALE*LOG(TIMESURVIVAL);
PROPORTIONALITY_TEST: TEST AGE_T, MALE_T;
RUN;
```

Type 3 Tests

	Wald Effect		
DF	Chi-Square		

Analysis of Maximum Likelihood Estimates

Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > Chisq	Hazard Ratio	95\% Hazard Confidence	Ratio Limits	Label
EARLY_AGE INFANT	1	3.05714	0.40235	57.7340	<. 0001	21.267	9.665	46.793	EARLY AGE INFANT
EARLY_AGE OLD	1	0.22946	0.42496	0.2915	0.5892	1.258	0.547	2.893	EARLY_AGE OLD
MALE 1	1	0.18871	0.60235	0.0982	0.7541	1.208	0.371	3.933	MALE 1
AGE_T	1	0.07987	0.06484	1.5175	0.2180	1.083	0.954	1.230	
MALE_T	1	0.02923	0.09814	0.0887	0.7658	1.030	0.849	1.248	

Linear Hypotheses Testing Results
Wald

Label	Chi-Square	DF	$\mathrm{Pr}>$ Chisq
PROPORTIONALITY_TEST	1.6654	2	0.4349

Topics Covered

- Time-To-Event Data Analysis
- Introduction to time-to-event analysis
- Kaplan-Meier Curves
- Testing difference over strata
- Cumulative Incidence Curves
- Use of macro
- Introduction to Cox Proportional Hazards Modeling
- Testing proportional hazards assumption

